Cardy-Verlinde Formula and Thermodynamics of Black Holes in de Sitter Spaces

نویسنده

  • Rong-Gen Cai
چکیده

We continue the study of thermodynamics of black holes in de Sitter spaces. In a previous paper (hep-th/0111093), we have shown that the entropy of cosmological horizon in the Schwarzschild-de Sitter solutions and topological de Sitter solutions can be expressed in a form of the Cardy-Verlinde formula, if one adopts the prescription to compute the gravitational mass from data at early or late time infinity of de Sitter space. However, this definition of gravitational mass cannot give a similar expression like the Cardy-Verlinde formula for the entropy associated with the horizon of black holes in de Sitter spaces. In this paper, we first generalize the previous discussion to the cases of Reissner-Nordströmde Sitter solutions and Kerr-de Sitter solutions. Furthermore, we find that the entropy of black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. We discuss the implication of our result. In addition, we give the first law of de Sitter black hole mechanics. ∗Email address: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 v 1 1 M ay 2 00 4 The Cardy - Verlinde formula and entropy of black holes in de Sitter spaces

In this paper we show that the entropy of a cosmological horizon in topological Reissner-Nordström-de Sitter and Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimension. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verl...

متن کامل

The Caedy-Verlinde formula and entropy of Topological Reissner-Nordström black holes in de Sitter spaces

In this paper we discuss the question of whether the entropy of cosmological horizon in Topological Reissner-Nordströmde Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any dimension. Furthermore, we find that the entropy of black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for th...

متن کامل

Logarithmic corrections to the Bekenstein-Hawking entropy for five-dimensional black holes and de Sitter spaces

We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by −k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases in...

متن کامل

2 00 5 The Generalized Uncertainty Principle and Corrections to the Cardy - Verlinde Formula in SAdS 5 Black Holes

In this letter, we investigate a possible modification to the temperature and entropy of 5−dimensional Schwarzschild anti de Sitter black holes due to incorporating stringy corrections to the modified uncertainty principle. Then we subsequently argue for corrections to the Cardy-Verlinde formula in order to account for the corrected entropy. Then we show, one can taking into account the general...

متن کامل

Cardy-Verlinde Formula and Asymptotically de Sitter Spaces

In this paper we discuss the question of whether the entropy of cosmological horizon in some asymptotically de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any dimension. For the Schwarzschild-de Sitter solution, although the gravitational mass is always negative (in the sense of the prescription in hep-th/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001